Foxc2 coordinates inflammation and browning of white adipose by leptin-STAT3-PRDM16 signal in mice

    loading  Checking for direct PDF access through Ovid



The objective of this study is to characterize the relationship between forkhead box C2 protein (Foxc2) and leptin under adipose inflammatory response.


Lipopolysaccharide (LPS)-induced inflammatory model was conducted. Data from wild-type and ob/ob mice were used to compare the alternative role of leptin on Foxc2-mediated inflammation and browning. Transcriptional regulation and proteinprotein interaction were analyzed by bioinformatics and proved by chromatin immunoprecipitation and co-immunoprecipitation experiment.


Foxc2 and leptin correlated with inflammation and browning of white adipose tissue (WAT) in LPS-treated mice. Moreover, Foxc2-mediated inhibition of inflammation involved downstream activation of leptin signal and promoted WAT browning. We then determined CREB, the potential transcriptional factor of leptin, was required for Foxc2-mediated inflammation in the regulation of WAT browning. Foxc2 alleviated adipocyte inflammation by reducing leptin-mediated Janus-activated kinase 2/signal transducer and activator of transcription 3 (STAT3) pathway. Importantly, STAT3 physically interacted with PRDM16 and formed a complex to promote WAT browning. Exogenous Foxc2 overexpression also ameliorated inflammation and promoted adipose browning in high fat diet (HFD)-induced obese mice.


Our results indicated that Foxc2 inhibited inflammation and promoted browning of WAT through positive regulation of leptin signal and the STAT3-PRDM16 complex. These findings identify a new potential means to prevent and treat obese caused metabolic syndrome of mammals.

Related Topics

    loading  Loading Related Articles