Non contrast, Pseudo-Continuous Arterial Spin Labeling and Accelerated 3-Dimensional Radial Acquisition Intracranial 3-Dimensional Magnetic Resonance Angiography for the Detection and Classification of Intracranial Arteriovenous Shunts

    loading  Checking for direct PDF access through Ovid

Abstract

Objectives

The aim of this study was to assess the sensitivity and specificity of pseudo-continuous arterial spin labeling (PCASL) magnetic resonance angiography (MRA) with 3-dimensional (3D) radial acquisition for the detection of intracranial arteriovenous (AV) shunts.

Materials and Methods

A total of 32 patients who underwent PCASL-MRA, clinical magnetic resonance imaging (MRI)/MRA exam, and digital subtraction angiography (DSA) were included in this retrospective analysis. Twelve patients presented with AV shunts. Among these were 8 patients with AV malformations (AVM) and 4 patients with AV fistulas (AVF). The clinical MRI/MRA included 3D time-of-flight MRA in all cases and time-resolved, contrast-enhanced MRA in 9 cases (6 cases with AV shunting). Research MRI and clinical MRI were independently evaluated by 2 neuroradiologists blinded to patient history. A third radiologist evaluated DSA imaging. A diagnostic confidence score was used for the presence of abnormalities associated with AV shunting (1–5). The AVMs were characterized using the Spetzler-Martin scale, whereas AVFs were characterized using the Borden classification. κ Statistics were applied to assess intermodality agreement.

Results

Compared with clinical MRA, noncontrast PCASL-MRA with 3D radial acquisition yielded excellent sensitivity and specificity for the detection of intracranial AV shunts (reader 1: 100%/100%, clinical MRA: 91.7%, 94.4%; reader 2: 91.7%/100%, clinical MRA: 91.7%/100%). Diagnostic confidence was 4.8/4.66 with PCASL-MRA and 4.25/4.66 with clinical MRA. For AVM characterization with PCASL-MRA, intermodality agreement with DSA showed κ values of 0.43 and 0.6 for readers 1 and 2, respectively. For AVF characterization, intermodality agreement showed κ values of 0.56 for both readers.

Conclusion

Noncontrast PCASL-MRA with 3D radial acquisition is a potential tool for the detection and characterization of intracranial AV shunts with a sensitivity and specificity equivalent or higher than routine clinical MRA.

Related Topics

    loading  Loading Related Articles