Sex Differences in the Hormonal and Metabolic Response to Dietary Protein Dilution

    loading  Checking for direct PDF access through Ovid

Abstract

Consumption of a low-protein, high-carbohydrate diet induces a striking increase in circulating fibroblast growth factor-21 (FGF21), which is associated with improved cardiometabolic health and increased longevity. Increased lifespan during this dietary protein “dilution” has been explained by resource-mediated trade-offs between reproduction and survival, such that fecundity is optimized at a greater relative intake of proteins/carbohydrates. The magnitude of this trade-off is thought to be sex-dependent. In this study, we tested the hypothesis that metabolic responses to dietary protein dilution are likewise dependent on sex. We maintained age-matched adult male and female C57BL/6J mice on isocaloric diets containing 22% fat and differing in the ratio of protein/carbohydrate. The normal protein (NP) control diet contained 18% protein and 60% carbohydrate by kcal. The protein diluted (PD) diet contained 4% protein and 74% carbohydrate. Consistent with previous reports, PD males gained less weight and less fat than did normal protein controls and exhibited both improved glucose tolerance and decreased plasma lipids. In contrast, these metabolic benefits were absent among age-matched females maintained on the same diets. Likewise, whereas circulating FGF21 was increased up to 66-fold among PD male mice, this was substantially blunted among female counterparts. Sex differences in energy balance, glucose control, and plasma FGF21 were reversed upon ovariectomy. Collectively, our findings support that female mice are relatively less sensitive to the metabolic improvements observed following dietary protein dilution. This is accompanied by blunted circulating levels of FGF21 and requires an intact female reproductive system.

Related Topics

    loading  Loading Related Articles