Effects of menopause and high-intensity training on insulin sensitivity and muscle metabolism

    loading  Checking for direct PDF access through Ovid

Abstract

Objective:

To investigate peripheral insulin sensitivity and skeletal muscle glucose metabolism in premenopausal and postmenopausal women, and evaluate whether exercise training benefits are maintained after menopause.

Methods:

Sedentary, healthy, normal-weight, late premenopausal (n = 21), and early postmenopausal (n = 20) women were included in a 3-month high-intensity exercise training intervention. Body composition was assessed by magnetic resonance imaging and dual-energy x-ray absorptiometry, whole body glucose disposal rate (GDR) by hyperinsulinemic euglycemic clamp (40 mU/m2/min), and femoral muscle glucose uptake by positron emission tomography/computed tomography, using the glucose analog fluorodeoxyglucose, expressed as estimated metabolic rate (eMR). Insulin signaling was investigated in muscle biopsies.

Results:

Age difference between groups was 4.5 years, and no difference was observed in body composition. Training increased lean body mass (estimate [95% confidence interval] 0.5 [0.2-0.9] kg, P < 0.01) and thigh muscle mass (0.2 [−0.1 to 0.6] kg, P < 0.01), and decreased fat percentage (1.0 [0.5-1.5]%, P < 0.01) similarly in the two groups. The postmenopausal women had lower eMR in vastus lateralis muscle than the premenopausal women (−14.0 [−26.0 to −2.0] μmol/min/kg, P = 0.02), and tended to have lower eMR in femoral muscles (−11.2 [−22.7 to 0.4] μmol/min/kg, P = 0.06), and also GDR (−59.3 [−124.8 to 6.3] mg/min, P = 0.08), but increased similarly in both groups with training (eMR vastus lateralis muscle: 27.8 [19.6-36.0] μmol/min/kg, P < 0.01; eMR femoral muscle: 20.0 [13.1-26.7] μmol/min/kg, P < 0.01, respectively; GDR: 43.6 [10.4-76.9] mg/min, P = 0.01). Potential mechanisms underlying the training-induced increases in insulin sensitivity included increased expression of hexokinase (19.2 [5.0-24.7] AU, P = 0.02) and glycogen synthase (32.4 [15.0-49.8] AU, P < 0.01), and also increased insulin activation of Akt2 (20.6 [3.4-29.0], P = 0.03) and dephosphorylation of glycogen synthase (−41.8 [−82.9 to −0.7], P = 0.05).

Conclusions:

Insulin sensitivity was reduced in early postmenopausal women. However, postmenopausal women increased peripheral insulin sensitivity, skeletal muscle insulin-stimulated glucose uptake, and skeletal muscle mass to the same extent as premenopausal women after 3 months of high-intensity exercise training.

Related Topics

    loading  Loading Related Articles