Heterogeneity and Homogeneity of Regional Brain Structure in Schizophrenia: A Meta-analysis

    loading  Checking for direct PDF access through Ovid

Abstract

Importance

Schizophrenia is associated with alterations in mean regional brain volumes. However, it is not known whether the clinical heterogeneity seen in the disorder is reflected at the neurobiological level, for example, in differences in the interindividual variability of these brain volumes relative to control individuals.

Objective

To investigate whether patients with first-episode schizophrenia exhibit greater variability of regional brain volumes in addition to mean volume differences.

Data Sources

Studies that reported regional brain volumetric measures in patients and controls by using magnetic resonance imaging in the MEDLINE, EMBASE, and PsycINFO databases from inception to October 1, 2016, were examined.

Study Selection

Case-control studies that reported regional brain volumes in patients with first-episode schizophrenia and healthy controls by using magnetic resonance imaging were selected.

Data Extraction and Synthesis

Means and variances (SDs) were extracted for each measure to calculate effect sizes, which were combined using multivariate meta-analysis.

Main Outcomes and Measures

Relative variability of regional brain volumetric measurements in patients compared with control groups as indexed by the variability ratio (VR) and coefficient of variation ratio (CVR). Hedges g was used to quantify mean differences.

Results

A total of 108 studies that reported measurements from 3901 patients (1272 [32.6%] female) with first-episode schizophrenia and 4040 controls (1613 [39.9%] female) were included in the analyses. Variability of putamen (VR, 1.13; 95% CI, 1.03-1.24; P = .01), temporal lobe (VR, 1.12; 95% CI, 1.04-1.21; P = .004), thalamus (VR, 1.16; 95% CI, 1.07-1.26; P < .001), and third ventricle (VR, 1.43; 95% CI, 1.20-1.71; P < 1 × 10−5) volume was significantly greater in patients, whereas variability of anterior cingulate cortex volume was lower (VR, 0.89; 95% CI, 0.81-0.98; P = .02). These findings were robust to choice of outcome measure. There was no evidence of altered variability of caudate nucleus or frontal lobe volumes. Mean volumes of the lateral (g = 0.40; 95% CI, 0.29-0.51; P < .001) and third ventricles (g = 0.43; 95% CI, 0.26-0.59; P < .001) were greater, whereas mean volumes of the amygdala (g = −0.46; −0.65 to −0.26; P < .001), anterior cingulate cortex (g = −0.26; 95% CI, −0.43 to −0.10; P = .005), frontal lobe (g = −0.31; 95% CI, −0.44 to −0.19; P = .001), hippocampus (g = −0.66; 95% CI, −0.84 to −0.47; P < .001), temporal lobe (g = −0.22; 95% CI, −0.36 to −0.09; P = .001), and thalamus (g = −0.36; 95% CI, −0.57 to −0.15; P = .001) were lower in patients. There was no evidence of altered mean volume of caudate nucleus or putamen.

Conclusions and Relevance

In addition to altered mean volume of many brain structures, schizophrenia is associated with significantly greater variability of temporal cortex, thalamus, putamen, and third ventricle volumes, consistent with biological heterogeneity in these regions, but lower variability of anterior cingulate cortex volume. This finding indicates greater homogeneity of anterior cingulate volume and, considered with the significantly lower mean volume of this region, suggests that this is a core region affected by the disorder.

Related Topics

    loading  Loading Related Articles