A limited series of synthetic tetrahydroisoquinoline alkaloids reduce inflammatory gene iNOSviainhibition of p-STAT-1 and suppress HMGB1 secretion in LPS-treated mice lung tissue

    loading  Checking for direct PDF access through Ovid

Abstract

Tetrahydroisoquinoline alkaloids (THIs) have shown to increase survival and beneficial effect on animal model of sepsis, partly due to heme oxygenase-1 (HO-1) induction. Here, we aimed to compare a limited series of synthesized THIs on HO-1 induction and inhibitory effect of iNOS and COX-2 expression in lipopolysaccharide (LPS)-activated RAW264.7 cells. To the end, most promising compound (THI-61) was tested whether this compound reduces iNOS protein expression and inflammatory markers (HMGB1, TNF-α) in LPS-treated mice lung tissue. The results indicated that N-carbonyl substituted THI seem to affect HO-1 induction depending on which functional group is attached to C1 position. All compounds that reduce LPS-activated NF-κB-luciferase activity showed to preferential inhibition of iNOS/NO but not COX-2/PGE2 that was partly related to inhibition of STAT-1 phosphorylation. In particular, THI-61 induced translocation of Nrf2 from cytosol into the nucleus by an increased Nrf2-ARE binding activity, and reduced IL-1β production in LPS-activated RAW264.7 cells. The reduced expression of iNOS/NO by THI-61 was reversed by siHO-1RNA-transfection. In LPS-treated mice, THI-61 significantly reduced iNOS protein in lung tissues, and HMGB1 and TNF-α levels in the BALF. We concluded that 1) lipophilic moiety of 1C substituent is much more important in N-carbonyl substituted THI for induction of HO-1, 2) newly synthesized THI-61 may be beneficial for treatment of lung injury.

Related Topics

    loading  Loading Related Articles