Establishment of twist-1 and TGFBR2 as direct targets of microRNA-20a in mesenchymal to epithelial transition of breast cancer cell-line MDA-MB-231

    loading  Checking for direct PDF access through Ovid

Abstract

Messenchymal to epithelial transition (MET) is a significant physiological phenomenon involved in embryogenesis and cancer. This study aims at investigating the mechanism of microRNA-20a (miR-20a) mediated regulation of mesenchymal to epithelial transition and identification of its direct target genes in breast cancer cell-line, MDA-MB-231. Reduced migratory and invasive property, altered cellular morphology along with reduced capability for attachment to basement membrane was acquired by over-expression of miR-20a in invasive MDA-MB-231 cell-line initially expressing low level of this micro-RNA, indicating direct correlation between abundance of miR-20a and metastatic property. The switch from mesenchymal to epithelial cells mediated by miR-20a involved post-transcriptional down-regulation of twist1, which in turn controls downstream epithelial markers like E-cadherin, claudin and mesenchymal markers like N-cadherin, fibronectin, the crucial players of mesenchymal to epithelial transition (MET). Furthermore, another key component, TGF-β and one of its receptors (TGFBR2) were found to be down-regulated by miR-20a. Additionally, reporter assay established that post-transcriptional down-regulation of TGFBR2 occurred through direct binding of miR-20a to its 3′UTR, thus abrogating the TGF-β signaling pathway resulting in inhibition of MET. Delineating the underlying molecular mechanism of miR-20a-mediated MET and defining the target genes will help us to introduce a miRNA-mediated effective therapeutic strategy against breast cancer.

Related Topics

    loading  Loading Related Articles