Body mass index is associated with cortical thinning with different patterns in mid- and late-life

    loading  Checking for direct PDF access through Ovid



High BMI at midlife is associated with increased risk of dementia as well as faster decline in cognitive function. In late-life, however, high BMI has been found to be associated with both increased and decreased dementia risk. The objective of this study was to investigate the neural substrates of this age-related change in body mass index (BMI) risk.


We measured longitudinal cortical thinning over the whole brain, based on magnetic resonance imaging scans for 910 individuals aged 44-66 years at baseline. Subjects were sampled from a large population study (PATH, Personality and Total Health through Life). After attrition and exclusions, the final analysis was based on 792 individuals, including 387 individuals aged 60-66 years and 405 individuals aged 44-49 years. A mixed-effects model was used to test the association between cortical thinning and baseline BMI, as well as percentage change in BMI.


Increasing BMI was associated with increased cortical thinning in posterior cingulate at midlife (0.014 mm kg-1 m-2, confidence interval; CI = 0.005, 0.023, P < 0.05 false discovery rate (FDR) corrected). In late-life, increasing BMI was associated with reduced cortical thickness, most prominently in the right supramarginal cortex (0.010 mm kg-1 m-2, CI = 0.005-0.016, P < 0.05 FDR corrected), as well as frontal regions. In late-life, decreasing BMI was also associated with increased cortical thinning, including right caudal middle frontal cortex (0.014 mm kg-1 m-2 (CI = 0.006-0.023, P < 0.05 FDR corrected).


The pattern of cortical thinning—in association with increasing BMI at both midlife and late-life—is consistent with known obesity-related dementia risk. Increased cortical thinning in association with decreasing BMI at late-life may help explain the ‘obesity paradox’, where high BMI in midlife appears to be a risk factor for dementia, but high BMI in late-life appears, at times, to be protective.

Related Topics

    loading  Loading Related Articles