The physical response to a simulated period of soccer-specific fixture congestion

    loading  Checking for direct PDF access through Ovid

Abstract

The aim of this study was to assess the physiological, perceptual, and mechanical measures associated with the completion of a simulated period of short-term soccer-specific fixture congestion. Ten male semi-professional soccer players completed three trials of a treadmill-based match simulation, with 48 hours intervening each trial. A repeated measures general linear model identified significantly (P= 0.02) lower knee flexor peak torque (PT) recorded at 300 degs[BULLET OPERATOR]s-1 in the second (141.27 ± 28.51 Nm) and third trials (139.12 ± 26.23 Nm) when compared to the first (154.17 ± 35.25 Nm). Similarly, muscle soreness (MS) and PT data recorded at 60 degs[BULLET OPERATOR]s-1 were significantly (P< 0.05) different in the third trial (MS= 42 ± 25 a.u; PT60= 131.10 ± 35.38 Nm) when compared to the first (MS= 29 ± 29 a.u; PT60= 145.61 ± 42.86 Nm). Significant (P= 0.003) differences were also observed for mean Bicep Femoris electromyography (EMGmean) between the third trial (T0-15= 126.36 ± 15.57 µV; T75-90= 52.18 ± 17.19 µV) and corresponding time points in the first trial (T0-15= 98.20 ± 23.49 µV; T75-90= 99.97 ± 39.81 µV). Cumulative increases in perceived exertion, heart rate, oxygen consumption, blood lactate concentrations, EMGmean, and PlayerLoadTM were recorded across each trial. MS and PT were also significantly different post-trial. There were however no significant main effects or interactions for the salivary Immunoglobulin A, and the medial-lateral PlayerLoadTM metrics. These data suggest a biomechanical and muscular emphasis with residual fatigue, with implications for injury risk and the development of recovery strategies.

Related Topics

    loading  Loading Related Articles