6-Hydroxy-3-O-methyl-kaempferol 6-O-glucopyranoside potentiates the anti-proliferative effect of interferon α/β by promoting activation of the JAK/STAT signaling by inhibiting SOCS3 in hepatocellular carcinoma cells

    loading  Checking for direct PDF access through Ovid

Abstract

Suppressor of cytokine signaling 3 (SOCS3) is a key negative regulator of type I interferon (IFN α/β) signaling. Inhibition of SOCS3 by small molecules may be a new strategy to enhance the efficacy of type I IFN and reduce its side effects. We established a cell-based screening assay using human hepatoma HepG2 cells stably transfected with a plasmid wherein the luciferase reporter activity was propelled by interferon α-stimulated response element (ISRE), which is a motif specifically recognized by type I IFN-induced activation of Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. After screening our chemical library, 6-hydroxy-3-O-methyl-kaempferol 6-O-glucopyranoside (K6G) was identified to be a potent activator of type I IFN with EC50 value of 3.33 ± 0.04 μM. K6G enhanced the phosphorylation of JAK1, Tyk2, and STAT1/2 but decreased the phosphorylation of STAT3. K6G also promoted endogenous IFN-α-regulated genes expression. More interestingly, K6G significantly decreased the expression of SOCS3 without affecting the expression of SOCS1. Furthermore, K6G enhanced the anti-proliferative effect of IFN-α on hepatocellular carcinoma (HCC) cells. These results suggested that K6G potentiated the inhibitory effect of IFN-α on HCC cell proliferation through activation of the JAK/STAT signaling pathway by inhibiting SOCS3 expression. K6G warrants further investigation as a novel therapeutic method to enhance the efficacy of IFN-α/β.

Related Topics

    loading  Loading Related Articles