In Vitro Effect of Lysozyme on Albumin Deposition to Hydrogel Contact Lens Materials

    loading  Checking for direct PDF access through Ovid

Abstract

SIGNIFICANCE

Albumin deposition on contact lenses could be detrimental to contact lens (CL) wear because this may increase the risk of bacterial binding and reduce comfort. Lysozyme deposition on selected lens materials would reduce albumin deposition on lenses.

PURPOSE

This study aims to determine if lysozyme deposition on CLs could act as a barrier against subsequent albumin adsorption, using an in vitro model.

METHODS

Six hydrogel CL materials (etafilcon A, polymacon, nelfilcon A, omafilcon A, ocufilcon B, and nesofilcon A) were evaluated. Four CLs of each type were soaked in lysozyme solution for 16 hours at 37°C. Lysozyme-coated lenses were then placed in vials with 1.5 mL of artificial tear solution containing 125I-labeled albumin for 16 hours at 37°C with shaking. Four uncoated lenses of each type were used as controls. Lenses soaked in radiolabeled albumin were rinsed in a phosphate-buffered saline solution, and radioactive counts were measured directly on lenses using a gamma counter. Albumin uptake on lenses was measured using a calibration curve by plotting radioactive counts versus protein concentration.

RESULTS

Results are reported as mean ± SD. Lysozyme-coated etafilcon A lenses exhibited lower levels of deposited albumin than uncoated etafilcon A lenses (58 ± 12 vs. 84 ± 5 ng/lens; P < .05). There were no differences in albumin adsorption between control (uncoated) and lysozyme-coated polymacon (105 ± 10 vs. 110 ± 34 ng/lens), nelfilcon A (51 ± 7 vs. 42 ± 20 ng/lens), omafilcon A (90 ± 20 vs. 80 ± 38 ng/lens), ocufilcon B (87 ± 20 vs. 115 ± 50 ng/lens), and nesofilcon A (170 ± 29 vs. 161 ± 10 ng/lens) lens materials (P > .05). Uncoated nesofilcon A lenses deposited the highest amount of albumin when compared with other uncoated lenses (P < .05).

CONCLUSIONS

This study demonstrates that lysozyme deposited onto etafilcon A resists the deposition of albumin, which may potentially be beneficial to CL wearers.

Related Topics

    loading  Loading Related Articles