Cordycepin inhibits LPS-induced acute lung injury by inhibiting inflammation and oxidative stress

    loading  Checking for direct PDF access through Ovid

Abstract

Acute lung injury (ALI) is a common severe clinical syndrome in intensive care unit. Inflammation has been reported to play a critical role in the development of ALI. Cordycepin, an active component isolated from Cordyceps militaris, has been reported to have anti-inflammatory effects. However, the anti-inflammatory effects of cordycepin on LPS-induced ALI remain unclear. Therefore, in the present study, we assessed whether cordycepin could attenuate ALI induced by LPS. The mice were conditioned with cordycepin 1 h before intranasal instillation of LPS. Lung wet/dry (W/D) ratio, MPO activity, MDA content, and inflammatory cytokines production were detected. The expression of NF-κB p65, I-κB, Nrf2, and HO-1 were detected by western blot analysis. We found that LPS significantly increased lung wet/dry (W/D) ratio, MPO activity, MDA content, and inflammatory cytokines production. However, the increases were significantly inhibited by treatment of cordycepin. LPS-induced NF-κB activation was also suppressed by cordycepin. In addition, cordycepin was found to up-regulate the expression of Nrf2 and HO-1 in a dose-dependent manner. In conclusion, our results demonstrated that cordycepin could attenuate LPS-induced ALI effectively, probably due to inhibition of inflammation and oxidative stress.

Related Topics

    loading  Loading Related Articles