Sortilin inhibits amyloid pathology by regulating non-specific degradation of APP

    loading  Checking for direct PDF access through Ovid

Abstract

Amyloid plaque is one of the hallmarks of Alzheimer's disease (AD). The key component beta-amyloid (Aβ) is generated via proteolytic processing of amyloid precursor protein (APP). Sortilin (encoded by the gene Sort1) is a vacuolar protein sorting 10 protein domain-containing receptor, which is up-regulated in the brain of AD, colocalizes with amyloid plaques and interacts with APP. However, its role in amyloidogenesis remains unclear. In this study, we first found that the protein level of sortilin was up-regulated in the neocortex of aged (7 and 9 months old) but not young (2 and 5 months old) AD mice (APP/PS1). 9 months old APP/PS1 transgenic mice with Sort1 gene knockout showed increased amyloid pathology in the brain; and this phenotype was rescued by intrahippocampal injection of AAV-hSORT1. Moreover, the 9 months old APP/PS1 mice without Sort1 also displayed a decreased number of neurons and increased astrocyte activation in the hippocampus. In addition, the present study showed that the intracellular domain of sortilin was involved in the regulation of the non-specific degradation of APP. Together, our findings indicate that sortilin is a beneficial protein for the reduction of amyloid pathology in APP/PS1 mice by promoting APP degradation.

Related Topics

    loading  Loading Related Articles