Early steps toward understanding neuronal communication

    loading  Checking for direct PDF access through Ovid

Abstract

Purpose of review

The computational power of the brain arises from the complex interactions between neurons. One straightforward method to quantify the strength of neuronal interactions is by measuring correlation and coherence. Efforts to measure correlation have been advancing rapidly of late, spurred by the development of advanced recording technologies enabling recording from many neurons and brain areas simultaneously. This review highlights recent results that provide clues into the principles of neural coordination, connections to cognitive and neurological phenomena, and key directions for future research.

Recent findings

The correlation structure of neural activity in the brain has important consequences for the encoding properties of neural populations. Recent studies have shown that this correlation structure is not fixed, but adapts in a variety of contexts in ways that appear beneficial to task performance. By studying these changes in biological neural networks and computational models, researchers have improved our understanding of the principles guiding neural communication.

Summary

Correlation and coherence are highly informative metrics for studying coding and communication in the brain. Recent findings have emphasized how the brain modifies correlation structure dynamically in order to improve information-processing in a goal-directed fashion. One key direction for future research concerns how to leverage these dynamic changes for therapeutic purposes.

Related Topics

    loading  Loading Related Articles