A precision therapy against cancers driven by KIT/PDGFRA mutations

    loading  Checking for direct PDF access through Ovid

Abstract

Targeting oncogenic kinase drivers with small-molecule inhibitors can have marked therapeutic benefit, especially when administered to an appropriate genomically defined patient population. Cancer genomics and mechanistic studies have revealed that heterogeneous mutations within a single kinase can result in various mechanisms of kinase activation. Therapeutic benefit to patients can best be optimized through an in-depth understanding of the disease-driving mutations combined with the ability to match these insights to tailored highly selective drugs. This rationale is presented for BLU-285, a clinical stage inhibitor of oncogenic KIT and PDGFRA alterations, including activation loop mutants that are ineffectively treated by current therapies. BLU-285, designed to preferentially interact with the active conformation of KIT and PDGFRA, potently inhibits activation loop mutants KIT D816V and PDGFRA D842V with subnanomolar potency and also inhibits other well-characterized disease-driving KIT mutants both in vitro and in vivo in preclinical models. Early clinical evaluation of BLU-285 in a phase 1 study has demonstrated marked activity in patients with diseases associated with KIT (aggressive systemic mastocytosis and gastrointestinal stromal tumor) and PDGFRA (gastrointestinal stromal tumor) activation loop mutations.

Related Topics

    loading  Loading Related Articles