Ischemia-Reperfusion Injury in Aged Livers—The Energy Metabolism, Inflammatory Response, and Autophagy

    loading  Checking for direct PDF access through Ovid

Abstract

Because of the lack of adequate organs, the number of patients with end-stage liver diseases, acute liver failure or hepatic malignancies waiting for liver transplantation is constantly increasing. Accepting aged liver grafts is one of the strategies expanding the donor pool to ease the discrepancy between the growing demand and the limited supply of donor organs. However, recipients of organs from old donors may show an increased posttransplantation morbidity and mortality due to enhanced ischemia-reperfusion injury. Energy metabolism, inflammatory response, and autophagy are 3 critical processes which are involved in the aging progress as well as in hepatic ischemia-reperfusion injury. Compared with young liver grafts, impairment of energy metabolism in aged liver grafts leads to lower adenosine triphosphate production and an enhanced generation of free radicals, both aggravating the inflammatory response. The aggravated inflammatory response determines the extent of hepatic ischemia-reperfusion injury and augments the liver damage. Autophagy protects cells by removal of damaged organelles, including dysfunctional mitochondria, a process impaired in aging and involved in ischemia-reperfusion–related apoptotic cell death. Furthermore, autophagic degradation of cellular compounds relieves intracellular adenosine triphosphate level for the energy depressed cells. Strategies targeting the mechanisms involved in energy metabolism, inflammatory response, and autophagy might be especially useful to prevent the increased risk for ischemia-reperfusion injury in aged livers after major hepatic surgery.

Related Topics

    loading  Loading Related Articles