Epiphytic fungal community in Vitis vinifera of the Portuguese wine regions

    loading  Checking for direct PDF access through Ovid

Abstract

In this work, fungi present in the grapevine's phyllosphere collected from the main demarcated wine regions of Portugal were identified, and their phylogenetic relationships were analysed. A total of 46 vine samples (leaves and berries) were collected from different parts of the country, being isolated a total of 117 fungal colonies that were identified to the genus level and sequenced in the following genetic regions: internal transcribed spacer region and 18S rRNA and β-tubulin gene. Next, a phylogenetic tree reconstruction for each genetic region was built. The isolates retrieved from environmental samples belonged to the genera Alternaria (31%), Cladosporium (21%), Penicillium (19%), Aspergillus (7%) and Epicoccum (3%). No genetic signatures of exchange of genetic material were detected, and consequently, the reconstructed phylogenetic trees allowed to distinguish between these different species/genera. In the fungal composition of the Vitis vinifera phyllosphere, several potential pathogens were identified that can be associated with decreases in crop productivity. Knowledge of fungi identification and genetic diversity is pivotal for the development of more adequate crop management strategies. Furthermore, this information will provide guidelines for a more specific and wiser use of fungicides.

Significance and Impact of the Study:

The knowledge on the composition of the phyllosphere microbial community is still limited, especially when fungi are concerned. These micro-organisms not only play a crucial role in crop health and productivity but also interact with the winemaking process, determining the safety and quality of grape and grape-derived products. The elucidation of the micro-organisms present in the phyllosphere will have a notorious impact on plant breeding and protection programmes and disease management strategies, allowing a better control of pesticide applications.

    loading  Loading Related Articles