Glutamate is down-regulated and tinnitus loudness-levels decreased followingrTMS over auditory cortex of the left hemisphere: A prospective randomized single-blinded sham-controlled cross-over study

    loading  Checking for direct PDF access through Ovid


Using a prospective randomized single-blinded sham-controlled cross-over design, we studied the efficacy of low frequency (1-Hz) repetitive transcranial magnetic stimulation (rTMS) over auditory cortex of the left temporal lobe as an experimental treatment modality for noise-induced tinnitus. Pre/post outcome measures for sham vs. active rTMS conditions included differential changes in tinnitus loudness, self-perceived changes in the Tinnitus Handicap Questionnaire (THQ), and neurochemical changes of brain metabolite concentrations using single voxel proton magnetic resonance spectroscopy (1H-MRS) obtained from left and right auditory cortical areas. While no subject in our sample had complete abatement of their tinnitus percept, active but not sham rTMS significantly reduced the loudness level of the tinnitus perception on the order of 4.5 dB; improved subscales in several content areas on the THQ, and down regulated (reduced) glutamate concentrations specific to the auditory cortex of the left temporal lobe that was stimulated.

In addition, significant pair-wise correlations were observed among questionnaire variables, metabolite variables, questionnaire-metabolite variables, and metabolite-loudness variables. As part of this correlation analysis, we demonstrate for the first time that active rTMS produced a down regulation in the excitatory neurotransmitter glutamate that was highly correlated (r = 0.77, p < 0.05) with a reduction in tinnitus loudness levels measured psychoacoustically with a magnitude estimation procedure. Overall, this study provides unique information on neurochemical, psychoacoustic, and questionnaire-related profiles which emphasizes the emerging fields of perceptual and cognitive MRS and provides a perspective on a new frontier in auditory and tinnitus-related research.

Related Topics

    loading  Loading Related Articles