Disentangling Inhibition-Based and Retrieval-Based Aftereffects of Distractors: Cognitive Versus Motor Processes

    loading  Checking for direct PDF access through Ovid


Selective attention refers to the ability to selectively act upon relevant information at the expense of irrelevant information. Yet, in many experimental tasks, what happens to the representation of the irrelevant information is still debated. Typically, 2 approaches to distractor processing have been suggested, namely distractor inhibition and distractor-based retrieval. However, it is also typical that both processes are hard to disentangle. For instance, in the negative priming literature (for a review Frings, Schneider, & Fox, 2015) this has been a continuous debate since the early 1980s. In the present study, we attempted to prove that both processes exist, but that they reflect distractor processing at different levels of representation. Distractor inhibition impacts stimulus representation, whereas distractor-based retrieval impacts mainly motor processes. We investigated both processes in a distractor-priming task, which enables an independent measurement of both processes. For our argument that both processes impact different levels of distractor representation, we estimated the exponential parameter (τ) and Gaussian components (μ, σ) of the exponential Gaussian reaction-time (RT) distribution, which have previously been used to independently test the effects of cognitive and motor processes (e.g., Moutsopoulou & Waszak, 2012). The distractor-based retrieval effect was evident for the Gaussian component, which is typically discussed as reflecting motor processes, but not for the exponential parameter, whereas the inhibition component was evident for the exponential parameter, which is typically discussed as reflecting cognitive processes, but not for the Gaussian parameter.

Related Topics

    loading  Loading Related Articles