Neuroprotective effect of an Nrf2-ARE activator identified from a chemical library on dopaminergic neurons

    loading  Checking for direct PDF access through Ovid

Abstract

The nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway, which induces the production of antioxidant enzymes, is a possible therapeutic target for treating diseases related to oxidative stress. Nrf2 activators often exhibit cytotoxicity due to nonspecific electrophilic reactions with thiol groups. We screened a chemical library to explore Nrf2 activators with a wide safety margin. In at least in vitro experiments, TPNA10168, identified from the library, showed a higher efficacy in Nrf2 activation and a lower cytotoxicity than sulforaphane, a well-known Nrf2 activator. The present study demonstrated the protective effect of TPNA10168 against 6-hydroxydopamine-induced cytotoxicity. In PC12 cells, NAD(P)H:quinone oxidoreductase 1 was upregulated by TPNA10168 and participated in the protective effect. In primary mesencephalic cultures, heme oxygenase-1, upregulated by TPNA10168 in astrocytes, provided protection of dopaminergic neurons via a guanylate cyclase/protein kinase G signaling pathway via carbon monoxide. These results suggest that the compound identified from the chemical library may be suitable as a neuroprotective agent with the ability to induce antioxidant enzymes.

    loading  Loading Related Articles