Particle agglomeration of chitosan–magnesium aluminum silicate nanocomposites for direct compression tablets

    loading  Checking for direct PDF access through Ovid

Abstract

Exfoliated nanocomposites of chitosan-magnesium aluminum silicate (CS-MAS) particles are characterized by good compressibility but poor flowability. Thus, the aims of this study were to investigate agglomerates of CS-MAS nanocomposites prepared using the agglomerating agents water, ethanol, or polyvinylpyrrolidone (PVP) for flowability enhancement and to evaluate the agglomerates obtained as direct compression fillers for tablets. The results showed that the addition of agglomerating agents did not affect crystallinity, but slightly influenced thermal behavior of the CS-MAS nanocomposites. The agglomerates prepared using water were larger than those prepared using 95% ethanol because high swelling of the layer of chitosonium acetate occurred, allowing formation of solid bridges and capillary force between particles, leading to higher flowability and particle strength. Incorporation of PVP resulted in larger agglomerates with good flowability and high strength due to the binder hardening mechanism. The tablets prepared from agglomerates using water showed lower hardness, shorter disintegration times and faster drug release than those using 95% ethanol. In contrast, greater hardness and more prolonged drug release were obtained from the tablets prepared from agglomerates using PVP. Additionally, the agglomerates of CS-MAS nanocomposites showed good carrying capacity and provided desirable characteristics of direct compression tablets.

Related Topics

    loading  Loading Related Articles