Baicalin attenuates non-alcoholic steatohepatitis by suppressing key regulators of lipid metabolism, inflammation and fibrosis in mice

    loading  Checking for direct PDF access through Ovid

Abstract

Aims:

Baicalin (BA), an active flavonoid compound originating from the herb of Scutellaria baicalensis Georgi, has been previously shown to exert anti-inflammation and anti-oxidant effects in liver diseases. However, the potential role of BA in the regulation of non-alcoholic steatohepatitis (NASH) remains elusive. In this study, we newly explored the hepatoprotective effects of BA in MCD diet-induced NASH by ameliorating hepatic steatosis, inflammation, fibrosis and apoptosis.

Main methods:

NASH was induced in mice fed a methionine and choline-deficient (MCD) diet for 4 weeks. The mice were simultaneously treated with or without BA for 4 weeks. Serum liver functional markers and inflammatory indicators were assessed by biochemical and ELISA methods, respectively. The livers were histologically examined using H&E, Oil Red O and Masson's trichrome staining methods. The qRT-PCR, IHC and Western blotting assays were applied to analyze mechanisms underlying BA protection.

Key findings:

BA treatment significantly attenuated MCD diet-induced hepatic lipid accumulation partly through regulating the expression of SREBP-1c, FASN, PPARα and CPT1a. BA treatment dramatically suppressed MCD diet-induced hepatic inflammation, which was associated with decrease in serum TNF-α, IL-1β and MCP-1 production, macrophage influx and suppression of nuclear factor-κB activation. Additionally, BA was proved to prevent liver fibrosis, which appears to be mediated by inhibition of α-SMA, TGF-β1 and Col1A1. Furthermore, BA markedly inhibited hepatocyte apoptosis and cleaved caspase-3 protein expression in MCD diet-induced mice.

Significance:

These results provide a possible basis of the underlying mechanism for the application of BA in the treatment of NASH.

Related Topics

    loading  Loading Related Articles