Photonuclear reactions triggered by lightning discharge

    loading  Checking for direct PDF access through Ovid

Abstract

Lightning and thunderclouds are natural particle accelerators1. Avalanches of relativistic runaway electrons, which develop in electric fields within thunderclouds2,3, emit bremsstrahlung γ-rays. These γ-rays have been detected by ground-based observatories4,5,6,7,8,9, by airborne detectors10and as terrestrial γ-ray flashes from space10,11,12,13,14. The energy of the γ-rays is sufficiently high that they can trigger atmospheric photonuclear reactions10,15,16,17,18,19that produce neutrons and eventually positrons viaβ+ decay of the unstable radioactive isotopes, most notably 13N, which is generated via 14N +γ→ 13N +n, whereγdenotes a photon andna neutron. However, this reaction has hitherto not been observed conclusively, despite increasing observational evidence of neutrons7,20,21and positrons10,22that are presumably derived from such reactions. Here we report ground-based observations of neutron and positron signals after lightning. During a thunderstorm on 6 February 2017 in Japan, a γ-ray flash with a duration of less than one millisecond was detected at our monitoring sites 0.5–1.7 kilometres away from the lightning. The subsequent γ-ray afterglow subsided quickly, with an exponential decay constant of 40–60 milliseconds, and was followed by prolonged line emission at about 0.511 megaelectronvolts, which lasted for a minute. The observed decay timescale and spectral cutoff at about 10 megaelectronvolts of the γ-ray afterglow are well explained by de-excitation γ-rays from nuclei excited by neutron capture. The centre energy of the prolonged line emission corresponds to electron–positron annihilation, providing conclusive evidence of positrons being produced after the lightning.

Related Topics

    loading  Loading Related Articles