Muscle Fiber and Performance Changes after Fast Eccentric Complex Training

    loading  Checking for direct PDF access through Ovid

Abstract

Introduction

The purpose of this study was to examine the effects of a short-term fast eccentric and ballistic complex training program on muscle power, rate of force development (RFD), muscle fiber composition, and cross-sectional area (CSA).

Methods

Sixteen male physical education students were randomly assigned to either a training group (TG, n = 8) or a control group (n = 8). The TG followed a 6-wk low volume training program, including fast eccentric squat training with an individually optimized load of 74% ± 7% of maximal half-squat strength (1RM) twice per week and a ballistic training session with loaded (30% 1RM) and unloaded jump squats, once per week, all combined with unloaded plyometric jumps.

Results

Half squat 1RM was increased in the TG from 1.87 ± 0.28 to 2.14 ± 0.31 kg per kilogram body mass (14.4% ± 9.3%, P = 0.01). The percentage of types I, IIA, and IIX fibers were similar in the two groups at pretesting and did not change after the intervention period (P = 0.53–0.89). Muscle fiber CSA increased in all fiber types by 8.3% to 11.6% (P = 0.02 to 0.001) in TG only. Countermovement jump height and peak power measured at five different external loads (0%–65% of 1RM) only increased in the TG by approximately 20% to 36% (P < 0.01) and approximately 16% to 22% (P < 0.01), respectively. Peak ground reaction force during jump squats remained unchanged in both groups, whereas RFD increased in the TG only (40%–107%, P = 0.001).

Conclusions

A combination of low-volume fast eccentric and ballistic jump squat training with plyometric jumps in a strength–power potentiation complex format, induced substantial increases in peak leg muscle power, RFD, and maximal strength, accompanied by gains in CSA of all muscle fiber types, without a reduction in fast twitch fiber composition.

Related Topics

    loading  Loading Related Articles