Postmortem immunohistochemical alterations following cerebral lesions: A possible pathohistological importance of the β-dystroglycan immunoreactivity

    loading  Checking for direct PDF access through Ovid

Abstract

The frequency of cerebrovascular injuries raises the importance of their immunohistological investigation in postmortem materials. Most injuries involve the impairment of the blood–brain barrier. The barrier is maintained by the glio-vascular connections which break up following injuries. Some immunohistochemical alterations may refer to the impairment of the gliovascular connections. Laminin and the components of the dystroglycan complex show characteristic immunohistochemical alterations following various experimental injuries (stab wound, cryogenic lesion, arterial occlusions): immunoreactivity of β-dystroglycan, α-dystrobrevin and aquaporin 4 disappeared while that of utrophin and laminin appeared along the vessels, whereas α-syntrophin visualized the reactive astrocytes but not the resting ones. The aims of the present study were to investigate whether these post-lesion alterations: (i) are reproducible with immersive fixation, which is used in postmortem histology; (ii) are resistant to a postmortem delay before fixation; and (iii) are to be attributed to a direct effect of the lesion, or are mediated by processes occurring only in the living brain. Three models were investigated: (i) following lesions, some brains were fixed by transcardial perfusion, others by immersion; (ii) following lesions, the animals were decapitated and stored at room temperature for 8 or 16 h before fixation; and (iii) the lesions were performed after decapitation. Cryogenic lesions were performed by applying a dry ice cooled copper rod to the brain surface of ketamine-xylazine anesthetized rats. The immunohistochemical reactions were performed on free-floating sections cut with vibratome. Both immunoperoxidase and immunofluorescence methods were used. The fixation method – perfusive or immersive – did not change the post-lesion phenomena investigated. The postmortem delay did not influence the β-dystroglycan immunoreactivity, that is its lack delineated the area of the lesion. However, in the case of the other substances, various lengths of postmortem delay rendered the immunohistochemistry uninterpretable. The results suggest β-dystroglycan immunostaining could be applied in the neuropathology to detect cerebrovascular impairments.

    loading  Loading Related Articles