Comparison of Quality and Output of Different Optimal Perimetric Testing Approaches in Children With Glaucoma

    loading  Checking for direct PDF access through Ovid

Abstract

Importance

There is limited evidence to support the development of guidance for visual field testing in children with glaucoma.

Objective

To compare different static and combined static/kinetic perimetry approaches in children with glaucoma.

Design, Setting, and Participants

Cross-sectional, observational study recruiting children prospectively between May 2013 and June 2015 at 2 tertiary specialist pediatric ophthalmology centers in London, England (Moorfields Eye Hospital and Great Ormond Street Hospital). The study included 65 children aged 5 to 15 years with glaucoma (108 affected eyes).

Main Outcomes and Measures

A comparison of test quality and outcomes for static and combined static/kinetic techniques, with respect to ability to quantify glaucomatous loss. Children performed perimetric assessments using Humphrey static (Swedish Interactive Thresholding Algorithm 24-2 FAST) and Octopus combined static tendency-oriented perimetry/kinetic perimetry (isopter V4e, III4e, or I4e) in a single sitting, using standardized clinical protocols, administered by a single examiner. Information was collected about test duration, completion, and quality (using automated reliability indices and our qualitative Examiner-Based Assessment of Reliability score). Perimetry outputs were scored using the Aulhorn and Karmeyer classification. One affected eye in 19 participants was retested with Swedish Interactive Thresholding Algorithm 24-2 FAST and 24-2 standard algorithms.

Results

Sixty-five children (33 girls [50.8%]), with a median age of 12 years (interquartile range, 9-14 years), were tested. Test quality (Examiner-Based Assessment of Reliability score) improved with increasing age for both Humphrey and Octopus strategies and were equivalent in children older than 10 years (McNemar test, χ2 = 0.33; P = .56), but better-quality tests with Humphrey perimetry were achieved in younger children (McNemar test, χ2 = 4.0; P = .05). Octopus and Humphrey static MD values worse than or equal to −6 dB showed disagreement (Bland-Altman, mean difference, −0.70; limit of agreement, −7.74 to 6.35) but were comparable when greater than this threshold (mean difference, −0.03; limit of agreement, −2.33 to 2.27). Visual field classification scores for static perimetry tests showed substantial agreement (linearly weighted κ, 0.79; 95% CI, 0.65-0.93), although 25 of 80 (31%) were graded with a more severe defect for Octopus static perimetry. Of the 7 severe cases of visual field loss (grade 5), 5 had lower kinetic than static classification scores.

Conclusions and Relevance

A simple static perimetry approach potentially yields high-quality results in children younger than 10 years. For children older than 10 years, without penalizing quality, the addition of kinetic perimetry enabled measurement of far-peripheral sensitivity, which is particularly useful in children with severe visual field restriction.

Related Topics

    loading  Loading Related Articles