Curcuma sp.-derived dehydrocurdione induces heme oxygenase-1 through a Michael reaction between its α, β-unsaturated carbonyl and Keap1

    loading  Checking for direct PDF access through Ovid

Abstract

To elucidate the anti-inflammatory mechanism of Curcuma sp., we investigated whether dehydrocurdione, a sesquiterpene contained in Curcuma sp., induces heme oxygenase (HO)-1, an antioxidative enzyme, in RAW 264.7 macrophages. Dehydrocurdione was extracted from the rhizome of Curcuma sp., and its purity was verified by high performance liquid chromatography. Treatment with 10–100 μM dehydrocurdione transiently and concentration-dependently increased HO-1 mRNA and protein levels. Docking simulation suggested the presence of the Michael reaction between dehydrocurdione and Kelch-like ECH-associated protein (Keap)1 keeping nuclear factor-erythroid2-related-factor (Nrf)2, a transcription factor, in the cytoplasm. Nrf2 that was definitely free from Keap1 was detected in the nuclei after dehydrocurdione treatment. Subsequently, the HO-1 E2 enhancer, a target of Nrf2, was activated, resulting in HO-1 expression. Also, an investigation using 6-shogaol and 6-gingerol supported the concept that the α, β-unsaturated carbonyl structure plays an important role in the interaction with Keap1. Dehydrocurdione suppressed lipopolysaccharide-induced NO release, a marker of inflammation. Clarification of the HO-1 synthesis increase mechanism revealed in this study will help contribute to the development of novel phytotherapeutic strategies against inflammation-associated diseases.

    loading  Loading Related Articles