Determination of the role of conventional, novel and atypical PKC isoforms in the expression of morphine tolerance in mice

    loading  Checking for direct PDF access through Ovid


This study comprehensively determines the role of all the major PKC isoforms in the expression morphine tolerance. Pseudosubstrate and receptors for activated C-kinase (RACK) peptides inhibit only a single PKC isoform, while previously tested chemical PKC inhibitors simultaneously inhibit multiple isoforms making it impossible to determine which PKC isoform mediates morphine tolerance. Tolerance can result in a diminished effect during continued exposure to the same amount of substance. In rodents, morphine pellets provide sustained exposures to morphine leading to the development of tolerance by 72 h. We hypothesized that administration of the PKC isoform inhibitors i.c.v. would reverse tolerance and reinstate antinociception in the tail immersion and hot plate tests from the morphine released solely from the pellet. Inhibitors to PKCα, γ and ε (100–625 pmol) dose-dependently reinstated antinociception in both tests. The PKCβI, βII, δ, θ, ε, η and ξ inhibitors were inactive (up to 2500 pmol). In other mice, the degree of morphine tolerance was determined by calculating ED50 and potency-ratio values following s.c. morphine administration. Morphine s.c. was 5.6-fold less potent in morphine-pelleted vs. placebo-pelleted mice. Co-administration of s.c. morphine with the inhibitors i.c.v. to either PKCα (625 pmol), γ (100 pmol) or ε (400 pmol) completely reversed the tolerance so that s.c. morphine was equally potent in both placebo- and morphine-pelleted mice. The PKCβI, βII, δ, θ, ε, η and ξ inhibitors were inactive. Thus, PKCα, γ and ε appear to contribute to the expression of morphine tolerance in mice.

    loading  Loading Related Articles