Tacrine-induced liver damage: an analysis of 19 candidate genes

    loading  Checking for direct PDF access through Ovid


ObjectivesTacrine, the first acetylcholinesterase inhibitor used in the treatment of Alzheimer's disease, is associated with transaminase elevation in up to 50% of patients. The mechanism of tacrine-induced liver damage is not fully understood, but earlier studies have suggested that genetic factors may play a role. Our aim was to investigate whether single-nucleotide polymorphisms (SNPs) in 19 candidate genes were associated with tacrine-induced liver damage.MethodsSixty-nine patients of Caucasian origin treated with tacrine for Alzheimer's disease were investigated by genotyping 241 SNPs in 19 candidate genes potentially related to hepatotoxicity. The association with ABCB4 [which encodes MultiDrug Resistance Protein 3 (MDR3)] was explored in transepithelial transport studies using the ABCB4-transfected pig kidney epithelial cell line (LLC-PK1).ResultsThe strongest association between alanine aminotransferase levels and three SNPs within ATP-binding cassette, subfamily B (MDR/TAP), member 4 (ABCB4) (uncorrected P=0.0005) was not significant after adjusting for multiple testing. No association was demonstrated with ATP-binding cassette, subfamily B (MDR/TAP), member 1 (ABCB1) or carnitine O-octanoyltransferase (CROT) which are located adjacent to ABCB4. Using the transepithelial transport system we failed to show a difference in tacrine accumulation between ABCB4-transfected and parental cell lines. The association with ABCB4 warrants further testing using either another population and/or functional studies.

    loading  Loading Related Articles