Indirect Effects of Elevated Body Mass Index on Memory Performance Through Altered Cerebral Metabolite Concentrations


    loading  Checking for direct PDF access through Ovid

Abstract

ObjectiveElevated body mass index (BMI) at midlife is associated with increased risk of cognitive decline in later life. The goal of the current study was to assess mechanisms of early brain vulnerability by examining if higher BMI at midlife affects current cognitive performance through alterations in cerebral neurochemistry.MethodsFifty-five participants, aged 40 to 60 years, underwent neuropsychological testing, health screen, and proton magnetic resonance spectroscopy examining N-acetylaspartate, creatine (Cr), myo-inositol (mI), choline, and glutamate concentrations in occipitoparietal gray matter. Concentrations of N-acetylaspartate, choline, mI, and glutamate were calculated as a ratio over Cr and examined in relation to BMI using multivariate regression analyses. Structural equation modeling was used to determine if BMI had an indirect effect on cognition through cerebral metabolite levels.ResultsHigher BMI was associated with elevations in mI/Cr (F(5,45) = 3.843, p = .006, β = 0.444, p = .002), independent of age, sex, fasting glucose levels, and systolic blood pressure. Moreover, a χ2 difference test of the direct and indirect structural equation models revealed that BMI had an indirect effect on global cognitive performance (Δχ2 = 19.939, df = 2, p < .001). Subsequent follow-up analyses revealed that this effect was specific to memory (Δχ2 = 22.027, df = 2, p < .001).ConclusionsHigher BMI was associated with elevations in mI/Cr concentrations in the occipitoparietal gray matter and indirectly related to poorer memory performance through mI/Cr levels, potentially implicating plasma hypertonicity and neuroinflammation as mechanisms underlying obesity-related brain vulnerability.

    loading  Loading Related Articles