Functionally Defective T Cells After Chemotherapy of B-Cell Malignancies Can Be Activated by the Tetravalent Bispecific CD19/CD3 Antibody AFM11


    loading  Checking for direct PDF access through Ovid

Abstract

Immunotherapy of B-cell malignancies with bispecific antibodies is an emerging treatment option. However, not all patients benefit from these therapies, presumably due to pretreatment regimens. Therefore, we determined the effect of different treatment lines on the activity of T cells and their responsiveness to AFM11. AFM11 is a tetravalent, bispecific CD19/CD3 immunoengager based on Affimed’s ROCK platform, currently being investigated in phase I clinical trials for non-Hodgkin lymphoma and acute lymphoblastic leukemia. T cells from B-cell lymphoma patients treated with either rituximab+bendamustine (R-Benda), rituximab+CHOP (R-CHOP), or with high-dose BEAM chemotherapy (HD-BEAM) and autologous HSCT were compared with T cells from healthy donors. Overall, in these patients, T-cell numbers were significantly reduced. To determine whether distinct chemotherapy affects AFM11 efficacy, functional T-cell assays were performed. It is interesting to note that, only in assays that combine target cell lysis, cytokine production and proliferation over 4 days at an effector to target ratio of up to 1:25 significant differences could be detected between the different treatment groups: T cells after R-CHOP showed only modest decrease in their functionality when compared with healthy controls, whereas R-Benda and HD-BEAM had a profound effect on AFM11-induced T-cell cytotoxicity. In conclusion, T cells from lymphoma patients are reduced in number and have functional defects following treatment with certain chemotherapy regimens, also reducing AFM11 efficacy. Importantly, AFM11 was still able to trigger B-cell-directed T-cell immunity in all treatment groups.

    loading  Loading Related Articles