Ostrowski-Like Method with Corrections for the Inclusion of Polynomial Zeros

    loading  Checking for direct PDF access through Ovid


In this paper we construct iterative methods of Ostrowski's type for the simultaneous inclusion of all zeros of a polynomial. Using the concept of the R-order of convergence of mutually dependent sequences, we present the convergence analysis of the total-step and the single-step methods with Newton and Halley's corrections. The case of multiple zeros is also considered. The suggested algorithms possess a great computational efficiency since the increase of the convergence rate is attained without additional calculations. Numerical examples and an analysis of computational efficiency are given.

    loading  Loading Related Articles