The Effect of Systemic Administration of Cloprostenol on Ovulation in Mares Treated with a Prostaglandin Synthetase Inhibitor


    loading  Checking for direct PDF access through Ovid

Abstract

ContentsProstaglandins (PGs) are essential to trigger the cascade of events that degrade the extracellular matrix of follicles leading to follicular rupture and ovulation. In mares, systemic administration of flunixin meglumine (FM), a PG synthetase inhibitor, blocks ovulation by inducing luteinized unruptured follicles (LUF). In the rat, the administration of PGF (PGF) and PGE restored ovulation in indomethacin treated animals. The mares were treated with FM 0, 12, 24 and 36 h after human chorionic gonadotrophin (hCG) administration to induce experimentally LUF (n = 15) or were left untreated (controls, n = 5). In addition, 250 μg of cloprostenol were administered intravenously to the mares 33, 35 and 36 h (CLO 33, n = 5) or 48, 49 and 50 h (CLO 48, n = 5) after hCG. One group was treated with FM but not with cloprostenol (FM-control, n = 5). The ovulation rate, follicular diameter and progesterone concentration were compared amongst groups. The ovulation rate at 48 h was higher (p < 0.05) in the controls (100%) than in the FM-control (0%), CLO 33 (0%) or CLO 48 (20%) mares. All but one FM treated mares developed LUF by 48 h after hCG administration. Two LUF collapsed between 48 and 60 h and 72 and 84 h in one mare from FM-control and from the CLO 33 group each, respectively. Progesterone concentration was significantly higher (p < 0.05) in the control mares than in any of the FM treated mares 5, 9 and 13 days after hCG. In conclusion, FM administered during the periovulatory period blocked ovulation in the mares. In contrast, the administration of cloprostenol, a PGF analogue, in the previously FM treated mares failed to restore ovulation.

    loading  Loading Related Articles