ThepssAgene encodes UDP-glucose: Polyprenyl phosphate-glucosyl phosphotransferase initiating biosynthesis ofRhizobium leguminosarumexopolysaccharide

    loading  Checking for direct PDF access through Ovid

Abstract

Abstract—

Symbiotic nitrogen-fixing bacteria Rhizobium leguminosarum bv. viciae VF39 secrete an acidic heteropolysaccharide, the biosynthesis of which involves the stage of polyprenyl diphosphate octasaccharide formation with its carbohydrate fragment corresponding to the repeating polymer unit. The amino acid analysis of the product of the pssA gene, we have earlier identified, showed its homology to bacterial polyisoprenyl phosphate hexose 1-phosphate transferases catalyzing the formation of phosphodiester bonds between polyprenyl phosphates and hexose 1-phosphates, whose donors are nucleotide sugars. The immunoblotting demonstrated that Rhizobium cells synthesize a protein with a molecular mass of 25 kDa, which implies the translation of the open reading frame occurring from the second initiating codon followed by the protein processing. It was shown that PssA is an integral membrane-bound protein involved in glucose 1-phosphate transfer from UDP-glucose to polyprenyl phosphate to form polyprenyl diphosphate glucose. These results suggest that the pssA gene encodes UDP-glucose:polyprenyl phosphate-glucosyl phosphotransferase.

Related Topics

    loading  Loading Related Articles