Structural and Functional Grounds for Ephedra sinica Expansion in Mongolian Steppe Ecosystems


    loading  Checking for direct PDF access through Ovid

Abstract

Morphological and structural characteristics of photosynthetic organs, diurnal changes in photosynthetic and transpiration rates, and the efficiency of water use were studied in three plant species from mountain-steppe ecosystems in Mongolia, Ephedra sinica Stapf, Stipa glareosa P. Smirn., and Allium polyrhizum Furcz. ex Regel. The species studied differed in the structural and functional mechanisms for the adaptation of photosynthetic apparatus to arid conditions. E. sinica has thick, vertical assimilating shoots, which are characterized by a high density (620 mg/cm3) and a small proportion of photosynthetic tissues (13%). The proportion of meso-phyll in the leaves of A. polyrhizum and S. glareosa was two and three times higher, respectively. The low content of phototrophic tissues in E. sinica shoot was compensated for by a high photosynthetic activity of single chloroplasts (25 mg CO2/(109 chloroplast h)), which was six times higher, than in two other species. Daily course of photosynthesis and transpiration in E. sinica differed from those of A. polyrhizum and S. glareosa by the absence of the midday depression. E. sinica had the highest efficiency of water use (45 mg CO2/g H2O) due to a low transpiration rate (0.25 g/g fr wt h). It is concluded that, in E. sinica, the main strategy for adaptation to arid stress is to develop in the shoot a few photosynthesizing cells of high assimilation activity. Such structural organization of photosynthetic organs in ephedra contributes to its higher efficiency of water use and stability of physiological characteristics under changing environmental conditions. These specific features of the structure of assimilating organs and their functional features contribute to a greater expansion of E. sinica with increasing climate aridization in Mongolia.

    loading  Loading Related Articles