In Situ Imaging of Silicalite-1 Surface Growth Reveals the Mechanism of Crystallization

    loading  Checking for direct PDF access through Ovid


The growth mechanism of silicalite-1 (MFI zeolite) is juxtaposed between classical models that postulate silica molecules as primary growth units and nonclassical pathways based on the aggregation of metastable silica nanoparticle precursors. Although experimental evidence gathered over the past two decades suggests that precursor attachment is the dominant pathway, direct validation of this hypothesis and the relative roles of molecular and precursor species has remained elusive. We present an in situ study of silicalite-1 crystallization at characteristic synthesis conditions. Using time-resolved atomic force microscopy images, we observed silica precursor attachment to crystal surfaces, followed by concomitant structural rearrangement and three-dimensional growth by accretion of silica molecules. We confirm that silicalite-1 growth occurs via the addition of both silica molecules and precursors, bridging classical and nonclassical mechanisms.

Related Topics

    loading  Loading Related Articles