STEM CELLS: Foxc1 reinforces quiescence in self-renewing hair follicle stem cells

    loading  Checking for direct PDF access through Ovid

Abstract

Stem cell quiescence preserves the cell reservoir by minimizing cell division over extended periods of time. Self-renewal of quiescent stem cells (SCs) requires the reentry into the cell cycle. In this study, we show that murine hair follicle SCs induce theFoxc1transcription factor when activated. DeletingFoxc1in activated, but not quiescent, SCs causes failure of the cells to reestablish quiescence and allows premature activation. DeletingFoxc1in the SC niche of gene-targeted mice leads to loss of the old hair without impairing quiescence. In self-renewing SCs, Foxc1 activates Nfatc1 and bone morphogenetic protein (BMP) signaling, two key mechanisms that govern quiescence. These findings reveal a dynamic, cell-intrinsic mechanism used by hair follicle SCs to reinforce quiescence upon self-renewal and suggest a unique ability of SCs to maintain cell identity.

Related Topics

    loading  Loading Related Articles