ASYMMETRIC CATALYSIS: Formation of α-chiral centers by asymmetric β-C(sp3)-H arylation, alkenylation, and alkynylation

    loading  Checking for direct PDF access through Ovid


The enzymatic β-C-H hydroxylation of the feedstock chemical isobutyric acid has enabled the asymmetric synthesis of a wide variety of polyketides. The analogous transition metal-catalyzed enantioselective β-C-H functionalization of isobutyric acid-derived substrates should provide a versatile method for constructing useful building blocks with enantioenriched α-chiral centers from this abundant C-4 skeleton. However, the desymmetrization of ubiquitous isopropyl moieties by organometallic catalysts has remained an unanswered challenge. Herein, we report the design of chiral mono-protected aminomethyl oxazoline ligands that enable desymmetrization of isopropyl groups via palladium insertion into the C(sp3)-H bonds of one of the prochiral methyl groups. We detail the enantioselective β-arylation, -alkenylation, and -alkynylation of isobutyric acid/2-aminoisobutyric acid derivatives, which may serve as a platform for the construction of α-chiral centers.

    loading  Loading Related Articles