Predicting reaction performance in C–N cross-coupling using machine learning

    loading  Checking for direct PDF access through Ovid

Abstract

Machine learning methods are becoming integral to scientific inquiry in numerous disciplines. We demonstrated that machine learning can be used to predict the performance of a synthetic reaction in multidimensional chemical space using data obtained via high-throughput experimentation. We created scripts to compute and extract atomic, molecular, and vibrational descriptors for the components of a palladium-catalyzed Buchwald-Hartwig cross-coupling of aryl halides with 4-methylaniline in the presence of various potentially inhibitory additives. Using these descriptors as inputs and reaction yield as output, we showed that a random forest algorithm provides significantly improved predictive performance over linear regression analysis. The random forest model was also successfully applied to sparse training sets and out-of-sample prediction, suggesting its value in facilitating adoption of synthetic methodology.

Related Topics

    loading  Loading Related Articles