Ultrafast electro-optic light with subcycle control

    loading  Checking for direct PDF access through Ovid


Light sources that are ultrafast and ultrastable enable applications like timing with subfemtosecond precision and control of quantum and classical systems. Mode-locked lasers have often given access to this regime, by using their high pulse energies. We demonstrate an adaptable method for ultrastable control of low-energy femtosecond pulses based on common electro-optic modulation of a continuous-wave laser light source. We show that we can obtain 100-picojoule pulse trains at rates up to 30 gigahertz and demonstrate sub–optical cycle timing precision and useful output spectra spanning the near infrared. Our source enters the few-cycle ultrafast regime without mode locking, and its high speed provides access to nonlinear measurements and rapid transients.

    loading  Loading Related Articles