Inflammatory monocytes hinder antiviral B cell responses

    loading  Checking for direct PDF access through Ovid


Antibodies are critical for protection against viral infections. However, several viruses, such as lymphocytic choriomeningitis virus (LCMV), avoid the induction of early protective antibody responses by poorly understood mechanisms. We analyzed the spatiotemporal dynamics of B cell activation to show that, upon subcutaneous infection, LCMV-specific B cells readily relocate to the interfollicular and T cell areas of draining lymph nodes, where they extensively interact with CD11b+Ly6Chi inflammatory monocytes. These myeloid cells were recruited to lymph nodes draining LCMV infection sites in a type I interferon– and CCR2-dependent fashion, and they suppressed antiviral B cell responses by virtue of their ability to produce nitric oxide. Depletion of inflammatory monocytes, inhibition of their lymph node recruitment, or impairment of their nitric oxide–producing ability enhanced LCMV-specific B cell survival and led to robust neutralizing antibody production. Our results identify inflammatory monocytes as critical gatekeepers that restrain antiviral B cell responses and suggest that certain viruses take advantage of these cells to prolong their persistence within the host.

Related Topics

    loading  Loading Related Articles