Construction, Expression and Immunoassay Detection of Recombinant Plasmid Encoding Fusion Protein of Roman Chicken Complement C3d and Newcastle Disease Virus F gene

    loading  Checking for direct PDF access through Ovid

Abstract

The terminal degradation product (C3d) of mammalian complement component C3 plays an important role in modulation of the adaptive immune response through the interaction with complement receptor type 2 (CR2) on B cells. In this study, the gene fragment coding for the complement protein C3d (chC3d) from Roman chicken was cloned and expressed as a fusion protein for its application in the vaccine study of chicken, and for in vitro experiments. The chC3d fragment strengthened B-cell responses when complexed with antigen. Three potential vaccine construct units were engineered to contain two, four and six copies of chC3d coding gene linked to the F gene of Newcastle disease virus (NDV), an economically important pathogen of chicken that is classified as a list A contagious disease of poultry by the Office International des Epizooties. The cloned chC3d protein and different repeats of C3d proteins in addition to the F gene of NDV were generated separately in Escherichia coli and chicken embryo fibroblast cells with the help of expression vectors. All recombinant proteins were analysed by SDS-PAGE and Western blotting. Analysis of the immunogenicity of different repeats of C3d revealed that chC3d had an enhancing effect on the immunogenicity of antigens, and that six or more repeats of C3d may be necessary for efficient enhancement of antigen-specific immune responses. To date, published research into the adjuvant activities of C3d has been limited to experiments in mice, rabbits and cattle. The adjuvant properties of C3d have not been assessed in poultry using homologous C3d in association with antigens relevant to the target species. The Roman chicken C3d fusion proteins described in this study is the first report and will provide a basis for immunization trials in chicken, studies of receptor binding and cell activation of chicken lymphocytes, and investigations of new types of vaccines, including recombinant vaccines and DNA vaccines for future use against other pathogens in chicken.

Related Topics

    loading  Loading Related Articles