PstS-1, the 38-kDaMycobacterium tuberculosisGlycoprotein, is an Adhesin, Which Binds the Macrophage Mannose Receptor and Promotes Phagocytosis

    loading  Checking for direct PDF access through Ovid


Mycobacterium tuberculosis, the primary causative agent of tuberculosis, infects macrophages and transforms the hostile intracellular environment into a permissive niche. M. tuberculosis infects macrophages using a variety of microbial ligand/cell receptor systems. In this study, binding assays with biotin-labelled mycobacterial cell wall proteins revealed five Concanavalin A-reactive proteins that bind macrophages. Among these proteins, we identified PstS-1, a 38-kDa M. tuberculosis mannosylated glycolipoprotein, and characterized it as an adhesin. Inhibition assays with mannan and immunoprecipitation demonstrated that PstS-1 binds the mannose receptor. We purified PstS-1 to 95.9% purity using ion exchange chromatography. The presence of mannose in purified PstS-1 was demonstrated by Concanavalin A interaction, which was abolished in the presence of sodium m-periodate and α-D-mannosidase. Gas chromatography revealed that purified PstS-1 contained 1% of carbohydrates by weight, which was mainly mannose. Finally, we used fluorescent microbeads coated with purified PstS-1 in phagocytosis assays and discovered that microbead uptake was inhibited by the pre-incubation of cells with GlcNAc, mannan and α-methyl mannoside. The interaction of PstS-1 coated beads with the mannose receptor was confirmed by confocal colocalization studies that showed high Pearson and Manders's colocalization coefficients. Our findings contribute to a better understanding of the strategies M. tuberculosis uses to infect host cells, the critical first step in the pathogenesis of tuberculosis.

Related Topics

    loading  Loading Related Articles