Pleistocene aeolianites at Cape Spencer, South Australia; record of a vanished inner neritic cool-water carbonate factory

    loading  Checking for direct PDF access through Ovid

Abstract

Aeolianites are integral components of many modern and ancient carbonate depositional systems. Southern Australia contains some of the most impressive and extensive late Cenozoic aeolianites in the modern world. Pleistocene aeolianites on Yorke Peninsula are sculpted into imposing seacliffs up to 60 m high and comprise two distinct imposing complexes of the Late Pleistocene Bridgewater Formation. The lower aeolianite complex, which forms the bulk of the cliffs, is a series of stacked palaeodunes and intervening palaeosols. The diagenetic low Mg-calcite sediment particles are mostly bivalves, echinoids, bryozoans and small benthic foraminifera. This association is similar to sediments forming offshore today on the adjacent shelf in a warm-temperate ocean. By contrast, the upper aeolianite complex is a series of mineralogically metastable biofragmental carbonates in a succession of stacked lenticular palaeodunes with impressive interbedded calcretes and palaeosols. Bivalves, geniculate coralline algae and benthic foraminifera, together with sparse peloids and ooids, dominate sediment grains. Fragments of large benthic foraminifera including Marginopora vertebralis, a photosymbiont-bearing protist, are particularly conspicuous. Palaeocean temperatures are interpreted as having been sub-tropical, somewhat warmer than offshore carbonate factories in the region today. The older aeolianite complex is tentatively correlated with Marine Isotope Stage 11, whereas the upper complex is equivalent to Marine Isotope Stage 5e. Marine Isotope Stage 5e deposits exposed elsewhere in southern Australia (Glanville Formation) are distinctive with a subtropical biota, including Marginopora vertebralis. Thus, in this example, palaeodune sediment faithfully records the nature of the adjacent inner neritic carbonate factory. By inference, aeolianites are potential repositories of information about the nature of long-vanished marine systems that have been removed due to erosion, tectonic obliteration or are inaccessible in the subsurface. Such information includes not only the nature of marine environments themselves but also palaeoceanography.

Related Topics

    loading  Loading Related Articles