Modelling Feedback of Chemical Reactions on Flow Fields in Hydrothermal Systems

    loading  Checking for direct PDF access through Ovid

Abstract

Coupled reactive transport models of hydrothermal systems provide new insights and deeper understanding of the processes occurring due to fluid flow, heat transfer, solute transport, and chemical reactions. Basic concepts of species transport (diffusion, dispersion, and advection) and chemical precipitation and dissolution reactions are discussed, and five end-member types of reactive transport environments are introduced. One of these reactive transport environments, named ‘reactions within thermal gradients’, is used to demonstrate how free thermal convection can lead to redeposition of minerals and, due to the feedback of reaction on the flow field, a change of the convection pattern. The direct consequence of changing the flow field is a significant variation of the temperature distribution within the modelled area. With the example it is shown how reactive transport simulation can be applied for the detailed study of fossil and recent hydrothermal systems.

Related Topics

    loading  Loading Related Articles