Role of Surfactant Proteins A and D in Sepsis-Induced Acute Kidney Injury

    loading  Checking for direct PDF access through Ovid

Abstract

Sepsis is a major cause of acute kidney injury (AKI) with high rates of morbidity and mortality. Surfactant proteins A and D (SP-A, SP-D) play a critical role in host defense and regulate inflammation during infection. Recent studies indicate SP-A and SP-D are expressed in the kidney. The current study examines the role of SP-A and SP-D in the pathogenesis of sepsis-induced AKI. Wild-type (WT) and SP-A/SP-D double-knockout (KO) C57BL/6 mice were treated by cecal ligation and puncture (CLP) or sham surgery. Histological, cellular, and molecular indices of kidney injury were investigated in septic mice 6 and 24 h after CLP. Twenty-four hours after CLP, kidney injury was more severe, renal function was decreased, and blood creatinine and blood urea nitrogen were higher in septic SP-A/SP-D KO mice (P < 0.05, versus septic WT mice). Kidney edema and vascular permeability were increased in septic SP-A/SP-D KO mice (P < 0.01, versus septic WT mice). Apoptotic cells increased significantly (P < 0.01) in the kidney of septic SP-A/SP-D KO mice compared with septic WT mice. Molecular analysis revealed levels of Bcl-2 (an inhibitor of apoptosis) were lower and levels of caspase 3 (a biomarker of apoptosis) were higher in the kidney of septic SP-A/SP-D KO mice (P < 0.01, versus septic WT mice). Furthermore, levels of nuclear factor κB and phosphorylated IκB-α increased significantly in the kidney of septic SP-A/SP-D KO mice compared with septic WT mice, suggesting SP-A/SP-D KO mice have a more pronounced inflammatory response to sepsis. We conclude SP-A and SP-D attenuate kidney injury by modulating inflammation and apoptosis in sepsis-induced AKI.

Related Topics

    loading  Loading Related Articles