SOLAR FLARE STATISTICS WITH A ONE-DIMENSIONAL MHD MODEL

    loading  Checking for direct PDF access through Ovid

Abstract

The dynamics of dissipative events in coronal loops is modeled with the compressible MHD equations in one space dimension in slab geometry, with a forcing that mimics the footpoint motions. Using a set of numerical simulations, the statistics of strong velocity and magnetic field gradients that develop, leading to a bursty dissipation, are analyzed. Agreement with existing observations of X-ray solar flares obtains concerning the power-law distribution of the luminosity histogram, including when the dynamics are simplified to that of the Burgers equation; in that latter case, this allows for recasting the analysis in terms of avalanche-type models.

Related Topics

    loading  Loading Related Articles