OPTICAL THICKNESS OF THE 2–4.5 GHZ SOLAR PLASMA EMISSION


    loading  Checking for direct PDF access through Ovid

Abstract

For radio emission at the frequency corresponding to the second harmonic of the local plasma frequency, the optical thickness in the solar atmosphere is calculated. Three types of models are assumed: the model with radio emission from the narrow transition region, and models with radio emission from a cool and dense plasma filament embedded in hotter plasma at the transition region and in the corona. The optical thickness is computed by integration of the collisional (free–free) absorption along a radio-ray path radial in the solar atmosphere. In all models considered the optical thickness can be sufficiently low for appropriate parameters. For example, in the narrow (<100 km) transition region where the density scale height is much less than that of the pressure one, the optical thickness can be lower than 1. Furthermore, the optical thickness can be decreased if the radio emission is generated in the cool and dense plasma filament surrounded by hotter and thinner plasma. But the models differ in density scale heights and thus in distances between plasma emission levels. This difference is essential for the interpretation of high-frequency type III radio bursts.

    loading  Loading Related Articles