PARTICLE ACCELERATION IN RECONNECTING CURRENT SHEETS IN IMPULSIVE ELECTRON-RICH SOLAR FLARES


    loading  Checking for direct PDF access through Ovid

Abstract

Electron and proton acceleration in reconnecting current sheets in electron-rich solar flares is considered. A significant three-dimensional magnetic field is assumed in the current sheet where the particles are accelerated by the DC electric field. The tearing instability of a pre-flare current sheet leads to the formation of multiple singular lines of magnetic field where the electric and magnetic fields are coaligned. Magnetized electrons are shown to be accelerated to a few tens of MeV before they leave the vicinity of a singular line. The acceleration time is estimated to be less than 10−3 s. By contrast, much heavier protons are unmagnetized and their energy gain is more modest. The model explains a high electron-to-proton ratio and the unusually intense gamma-ray continuum above 1 MeV observed in the electron-rich flares.

    loading  Loading Related Articles