Platelet-Rich Plasma (PRP) Stimulates the Extracellular Matrix Metabolism of Porcine Nucleus Pulposus and Anulus Fibrosus Cells Cultured in Alginate Beads

    loading  Checking for direct PDF access through Ovid


Study Design.

In vitro assessment of the effects of platelet-rich plasma on the extracellular matrix metabolism of porcine intervertebral disc cells.


To determine whether platelet-rich plasma is effective in stimulating cell proliferation and extracellular matrix metabolism by porcine disc cells cultured in alginate beads.

Summary of Background Data.

Platelet-rich plasma is used to accelerate wound healing and tissue regeneration. Activated platelets release multiple growth factors that regulate cell proliferation, differentiation, and morphogenesis. Individual growth factors present in platelet-rich plasma have been demonstrated to affect the metabolism of intervertebral disc cells.


Platelet-poor and platelet-rich plasma was isolated from fresh porcine blood using a commercially available platelet concentration system. After preculture for 7 days and serum starvation for 24 hours, the beads containing nucleus pulposus and anulus fibrosus cells were then cultured for another 72 hours in serum-free medium, 10% fetal bovine serum, 10% platelet-poor plasma, or 10% platelet-rich plasma. The synthesis of proteoglycans and collagen, the accumulation of proteoglycans, and the DNA content were biochemically assessed.


Platelet-rich plasma had a mild stimulatory effect on cell proliferation of intervertebral disc cells. Platelet-rich plasma treatment significantly upregulated proteoglycan and collagen synthesis and proteoglycan accumulation when compared with platelet-poor plasma.


Platelet-rich plasma was effective in stimulating cell proliferation and extracellular matrix metabolism. The response to platelet-rich plasma was greater in the case of anulus fibrosus cells than of nucleuspulposus cells. The local administration of platelet-rich plasma might stimulate intervertebral disc repair. In addition, given the risks of using animal serum for tissue engineering, autologous blood may gain favor as a source of growth factors and serum supplements needed for stimulating cells to engineer intervertebral disc tissues.

Related Topics

    loading  Loading Related Articles